Reuse and Mechanochemical Processing of Ore Dressing Tailings Used for Extracting Pb and Zn

Materials (Basel). 2023 Nov 1;16(21):7004. doi: 10.3390/ma16217004.

Abstract

The increasing accumulation of rock waste obtained due to ore processing and its environmental impacts, such as acid mine drainage and elevated concentrations of heavy metals in soils, necessitates the transformation of mining technologies based on the concept of circular waste management. The research is aimed at improving the parameters of the mechanical activation effect produced on technogenic georesources, as well as at expanding the application scope of disintegrators in the field of using the partial backfill of the mined-out space when developing stratified deposits. In this regard, the research purpose was to substantiate the parameters of extracting metals from enrichment tailings using their mechanochemical activation to ensure cyclic waste management. The research involved the application of three-dimensional interpolation methods used for processing the data and the graphical representation. As a result, the following was found to be characteristic of the waste of the Sadonsky mine management. The degree of extracting zinc from pre-activated tailings increases logarithmically when the H2SO4 concentration and the NaCl proportion decrease 3.5 times. The degree of extracting lead from the activated tailings increases according to the Fourier law when decreasing the NaCl mass concentration, and an optimal range of the H2SO4 (0.38-0.51%) proportion decreases six times. One of the key results of the research is the justification of expanding the scope of applying disintegrators in the case of a directed activation influence exerted on the components of the stowing strips. The obtained results expand the understanding of the mechanism of the influence of the mechanochemical activation of dry tailings on the reactivity unevenness when extracting several metals from them.

Keywords: chemical activation; circular waste management; environmental management; failure (mechanical); heavy metals and pollution; hydrometallurgical process; leaching Pb; resource use efficiency; sustainable production.

Grants and funding

This research received no external funding.