Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

Int J Environ Res Public Health. 2017 Nov 3;14(11):1336. doi: 10.3390/ijerph14111336.

Abstract

Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg-1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

Keywords: antibiotic-resistant genes; antibiotics; endophytic bacteria; hydroponic cultivation; pakchoi.

MeSH terms

  • Anti-Bacterial Agents / adverse effects*
  • Anti-Bacterial Agents / isolation & purification
  • Brassica / microbiology*
  • Drug Resistance, Microbial / drug effects*
  • Drug Resistance, Multiple, Bacterial / drug effects*
  • Drug Resistance, Multiple, Bacterial / genetics*
  • Endophytes / drug effects*
  • Endophytes / genetics
  • Humans
  • Prevalence
  • Vegetables / microbiology*

Substances

  • Anti-Bacterial Agents