Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant

Antioxidants (Basel). 2021 Nov 24;10(12):1874. doi: 10.3390/antiox10121874.

Abstract

NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2-/-) and wild-type (Nrf2+/+) mice neonatally exposed to hyperoxia were infected with RSV. To investigate the prenatal antioxidant effect on neonatal oxidative lung injury, time-pregnant Nrf2-/- and Nrf2+/+ mice were given an oral NRF2 agonist (sulforaphane) on embryonic days 11.5-17.5, and offspring were exposed to hyperoxia. Bronchoalveolar lavage and histopathologic analyses determined lung injury. cDNA microarray analyses were performed on placenta and neonatal lungs. RSV-induced pulmonary inflammation, injury, oxidation, and virus load were heightened in hyperoxia-exposed mice, and injury was more severe in hyperoxia-susceptible Nrf2-/- mice than in Nrf2+/+ mice. Maternal sulforaphane significantly alleviated hyperoxic lung injury in both neonate genotypes with more marked attenuation of severe neutrophilia, edema, oxidation, and alveolarization arrest in Nrf2-/- mice. Prenatal sulforaphane altered different genes with similar defensive functions (e.g., inhibition of cell/perinatal death and inflammation, potentiation of angiogenesis/organ development) in both strains, indicating compensatory transcriptome changes in Nrf2-/- mice. Conclusively, oxidative injury in underdeveloped lungs NRF2-dependently predisposed RSV susceptibility. In utero sulforaphane intervention suggested NRF2-dependent and -independent pulmonary protection mechanisms against early-life oxidant injury.

Keywords: bronchopulmonary dysplasia; hyperoxia; lung; mice; microarray; neonate; prenatal; respiratory syncytial virus; sulforaphane.