Gel-Embedded Biochar and Hydroxyapatite Composite for the Improvement of Saline-Alkali Soil and Plant Growth Promotion

Gels. 2024 Mar 25;10(4):222. doi: 10.3390/gels10040222.

Abstract

Soil amendments play a crucial role in modern agriculture, as they effectively enhance the planting environment. This study innovatively proposes the use of gel as a crosslinking agent to embed biochar and hydroxyapatite (HAP), thereby preparing a novel soil amendment. Furthermore, this study investigates the soil improvement effects of this amendment as well as its influence on plant growth. This study employed a hydrothermal method to combine corn stalk (CB) or sludge (SB) biochar with HAP at different ratios (0-20%). Subsequently, sodium alginate gel (SA) was utilized to encapsulate the biochar and minerals, successfully forming a ternary composite gel material (corn stalk biochar/sludge biochar-sodium alginate gel-hydroxyapatite: CB/SB-SA-HAP). Finally, the practical effectiveness of this amendment was verified through potted soil experiments. The results indicate that the CB/SB-SA-HAP composite materials exhibited a micrometre-scale spherical structure with well-developed micropores and possess the functional groups of CB/SB, SA, and HAP, along with unique mineral properties. Through pot experiments, it was verified that the composite material effectively enhances multiple soil properties. After 21 days of cultivation, the soil pH values stabilized within the neutral range (pH = 7 ± 0.3) across all treatment groups. Except for the CB0 (CB:HAP = 1:0) and CB2.0 (CB:HAP = 1:2) treatments, the remaining treatments significantly reduced the soil EC values by 3.27% to 47.92%. All treatments significantly increased the contents of alkali-hydrolysable nitrogen (AHN) (34.89~57.91%), available phosphorus (AP) (35.93~56.55%), and available potassium (AK) (36.41~56.80%) in the soil. In comparison, although the SB treatment was more effective in regulating the pH and electrical conductivity (EC) of saline-alkali soil than the CB treatment, it was less effective in promoting plant growth in the short term. Through correlation analysis and redundancy analysis, a significant positive correlation was found between soil pH and ryegrass germination rate and plant height, particularly with the most pronounced impact on soil pH observed in the CB1.0 and SB0 (SB:HAP = 1:0) treatments. This study underscores the potential of CB/SB-SA-HAP composite materials in soil improvement and plant growth promotion, providing valuable insights for soil remediation, enhancement, and plant cultivation advancements in the agricultural sector.

Keywords: biochar; gel material; hydroxyapatite; plant growth; saline–alkali soil.

Grants and funding

This study was supported by the Science and Technology Innovation Project on Emission Peak and Carbon Neutrality of Jiangsu Province (NO. BK20220040), the Open Fund for Large Instrumentation of Nanjing University of Science and Technology, Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX23_0125), Chunhui Talent Project of Hebei Provincial Natural Science Foundation (E2023519001), and the Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs, P. R. China (No. 2023F08).