Immune Cell Induced Migration of Osteoprogenitor Cells Is Mediated by TGF-β Dependent Upregulation of NOX4 and Activation of Focal Adhesion Kinase

Int J Mol Sci. 2018 Jul 31;19(8):2239. doi: 10.3390/ijms19082239.

Abstract

The cytokines secreted by immune cells have a large impact on the tissue, surrounding a fracture, e.g., by attraction of osteoprogenitor cells. However, the underlying mechanisms are not yet fully understood. Thus, this study aims at investigating molecular mechanisms of the immune cell-mediated migration of immature primary human osteoblasts (phOBs), with transforming growth factor beta (TGF-β), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and focal adhesion kinase (FAK) as possible regulators. Monocyte- and macrophage (THP-1 cells ± phorbol 12-myristate 13-acetate (PMA) treatment)-conditioned media, other than the granulocyte-conditioned medium (HL-60 cells + dimethyl sulfoxide (DMSO) treatment), induce migration of phOBs. Monocyte- and macrophage (THP-1 cells)-conditioned media activate Smad3-dependent TGF-β signaling in the phOBs. Stimulation with TGF-β promotes migration of phOBs. Furthermore, TGF-β treatment strongly induces NOX4 expression on both mRNA and protein levels. The associated reactive oxygen species (ROS) accumulation results in phosphorylation (Y397) of FAK. Blocking TGF-β signaling, NOX4 activity and FAK signaling effectively inhibits the migration of phOBs towards TGF-β. In summary, our data suggest that monocytic- and macrophage-like cells induce migration of phOBs in a TGF-β-dependent manner, with TGF-β-dependent induction of NOX4, associated production of ROS and resulting activation of FAK as key mediators.

Keywords: NADPH oxidase 4 (NOX4); focal adhesion kinase (FAK); migration; primary human osteoblasts (phOBs).

MeSH terms

  • Cell Differentiation / drug effects
  • Cell Movement / drug effects
  • Cells, Cultured
  • Focal Adhesion Protein-Tyrosine Kinases / metabolism*
  • HL-60 Cells
  • Humans
  • NADPH Oxidase 4 / metabolism*
  • Phosphorylation / drug effects
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects
  • THP-1 Cells
  • Tetradecanoylphorbol Acetate / analogs & derivatives
  • Tetradecanoylphorbol Acetate / pharmacology
  • Transforming Growth Factor beta / metabolism*

Substances

  • Reactive Oxygen Species
  • Transforming Growth Factor beta
  • phorbolol myristate acetate
  • NADPH Oxidase 4
  • Focal Adhesion Protein-Tyrosine Kinases
  • Tetradecanoylphorbol Acetate