Assessing Cognitive Workload in Motor Decision-Making through Functional Connectivity Analysis: Towards Early Detection and Monitoring of Neurodegenerative Diseases

Sensors (Basel). 2024 Feb 7;24(4):1089. doi: 10.3390/s24041089.

Abstract

Neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and frontotemporal dementia, among others, are increasingly prevalent in the global population. The clinical diagnosis of these NDs is based on the detection and characterization of motor and non-motor symptoms. However, when these diagnoses are made, the subjects are often in advanced stages where neuromuscular alterations are frequently irreversible. In this context, we propose a methodology to evaluate the cognitive workload (CWL) of motor tasks involving decision-making processes. CWL is a concept widely used to address the balance between task demand and the subject's available resources to complete that task. In this study, multiple models for motor planning during a motor decision-making task were developed by recording EEG and EMG signals in n=17 healthy volunteers (9 males, 8 females, age 28.66±8.8 years). In the proposed test, volunteers have to make decisions about which hand should be moved based on the onset of a visual stimulus. We computed functional connectivity between the cortex and muscles, as well as among muscles using both corticomuscular and intermuscular coherence. Despite three models being generated, just one of them had strong performance. The results showed two types of motor decision-making processes depending on the hand to move. Moreover, the central processing of decision-making for the left hand movement can be accurately estimated using behavioral measures such as planning time combined with peripheral recordings like EMG signals. The models provided in this study could be considered as a methodological foundation to detect neuromuscular alterations in asymptomatic patients, as well as to monitor the process of a degenerative disease.

Keywords: cognitive workload; decision-making; functional connectivity; motor planning; neurodegenerative diseases; statistical modeling.

MeSH terms

  • Adult
  • Cerebral Cortex
  • Cognition
  • Electroencephalography / methods
  • Electromyography
  • Female
  • Humans
  • Male
  • Muscle, Skeletal / physiology
  • Neurodegenerative Diseases* / diagnosis
  • Young Adult

Grants and funding

This research was partially supported by the Grant RESOL-1225-APN-DIR#CONICET from the Argentinian “Consejo Nacional de Investigaciones Científicas y Técnicas” (CONICET) and the Argentinian “Instituto Superior de Investigaciones Biológicas” (INSIBIO), as well as Grants RTI2018-098969-B-I00, DTS19/00175, and PDC2022-133952-100 from the Spanish “Ministerio de Ciencia, Innovación y Universidades” and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 899287 (NeuraViPeR). The APC was partially funded by PIUNT E701 from the Argentinian “Universidad Nacional de Tucumán” (UNT).