Evaluation of Pyrophosphate-Driven Proton Pumps in Saccharomyces cerevisiae under Stress Conditions

Microorganisms. 2024 Mar 20;12(3):625. doi: 10.3390/microorganisms12030625.

Abstract

In Saccharomyces cerevisiae, pH homeostasis is reliant on ATP due to the use of proton-translocating ATPase (H+-ATPase) which constitutes a major drain within cellular ATP supply. Here, an exogenous proton-translocating pyrophosphatase (H+-PPase) from Arabidopsis thaliana, which uses inorganic pyrophosphate (PPi) rather than ATP, was evaluated for its effect on reducing the ATP burden. The H+-Ppase was localized to the vacuolar membrane or to the cell membrane, and their impact was studied under acetate stress at a low pH. Biosensors (pHluorin and mQueen-2m) were used to observe changes in intracellular pH (pHi) and ATP levels during growth on either glucose or xylose. A significant improvement of 35% in the growth rate at a pH of 3.7 and 6 g·L-1 acetic acid stress was observed in the vacuolar membrane H+-PPase strain compared to the parent strain. ATP levels were elevated in the same strain during anaerobic glucose and xylose fermentations. During anaerobic xylose fermentations, co-expression of pHluorin and a vacuolar membrane H+-PPase improved the growth characteristics by means of an improved growth rate (11.4%) and elongated logarithmic growth duration. Our study identified a potential method for improving productivity in the use of S. cerevisiae as a cell factory under the harsh conditions present in industry.

Keywords: ATP; Saccharomyces cerevisiae; acetic acid; glucose; mQueen-2m; pH homeostasis; pHluorin; proton translocating pyrophosphatase (H+-PPase); proton-translocating ATPase (H+-ATPase); xylose.