Fluorescent Nanowire Ring Illumination for Wide-Field Far-Field Subdiffraction Imaging

Phys Rev Lett. 2017 Feb 17;118(7):076101. doi: 10.1103/PhysRevLett.118.076101. Epub 2017 Feb 14.

Abstract

Here we demonstrate an active method which pioneers in utilizing a combination of a spatial frequency shift and a Stokes frequency shift to enable wide-field far-field subdiffraction imaging. A fluorescent nanowire ring acts as a localized source and is combined with a film waveguide to produce omnidirectional illuminating evanescent waves. Benefitting from the high wave vector of illumination, the high spatial frequencies of an object can be shifted to the passband of a conventional imaging system, contributing subwavelength spatial information to the far-field image. A structure featuring 70-nm-wide slots spaced 70 nm apart has been resolved at a wavelength of 520 nm with a 0.85 numerical aperture standard objective based on this method. The versatility of this approach has been demonstrated by imaging integrated chips, Blu-ray DVDs, biological cells, and various subwavelength 2D patterns, with a viewing area of up to 1000 μm^{2}, which is one order of magnitude larger than the previous far-field and full-field nanoscopy methods. This new resolving technique is label-free, is conveniently integrated with conventional microscopes, and can potentially become an important tool in cellular biology, the on-chip industry, as well as other fields requiring wide-field nanoscale visualization.