Considerations on the Failure Mechanisms at Fatigue Loading of 1018 Steel Samples Coated with Wip-C1 by Cold Spray

Materials (Basel). 2024 Apr 18;17(8):1868. doi: 10.3390/ma17081868.

Abstract

There are some important advantages presented by metal specimens coated with WIP-C1 (Ni/CrC)-type materials. However, given the coating methods and the stress under dynamic loads, there are issues that need to be taken into account, particularly in terms of the behavior at the interface between the two materials. Using standardized cylindrical 1018 steel specimens uniformly coated with WIP-C1 (Ni/CrC) by cold spraying, this study investigated the fatigue behavior of the specimen as a whole, focusing on the interface areas of the two materials. The fatigue life diagram is given, to a large extent, by the behavior of the base material. As a result, in this work, we have focused not so much on the fatigue behavior of the assembly as on the integrity of the coating material and the defects, failures, etc., that may occur at the interface after a certain number of cycles. The applied load was cyclic fatigue through alternating-symmetric cycles. Scanning optical microscopy was used to observe plastic deformations and crack propagation during the breakage process. It was found that both the base material zone and the cover material zone presented good performance when the maximum stresses were at low values. A fatigue durability curve was also plotted, showing a conventional appearance for a metallic material, slightly influenced by the destruction of the base material interface. At higher maximum stress and, consequently, to large strains, a series of destructions at the interface of the two materials, of different types, were observed and will be highlighted in the paper.

Keywords: SEM analysis; coating; cold spray; crack initiation; fatigue; interface damage.