Satellite-based Flood Modeling Using TRMM-based Rainfall Products

Sensors (Basel). 2007 Dec 20;7(12):3416-3427. doi: 10.3390/s7123416.

Abstract

Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km² Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA's Tropical Rainfall Measuring Mission (TRMM) Multi-satellitePrecipitation Analysis (TMPA) product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

Keywords: Satellite rainfall; floods; statistical downscaling; uncertainty..