Deformable BCN/Fe3O4/PCL composites through electromagnetic wave remote control

Nanotechnology. 2020 Apr 3;31(25):255710. doi: 10.1088/1361-6528/ab758c. Epub 2020 Feb 12.

Abstract

Electromagnetic wave (EMW) induction of shape memory polymer (SMP) composites with multifunctional inorganic fillers is a high efficiency, uniform, and non-contact method. Herein, the shape memory effect of ternary BCN/Fe3O4/PCL composites induced by EMWs are explored. The components of Fe3O4 and the BCN nanotubes serve as wave-absorbing materials. The electromagnetic properties and EMW absorption performance of BCN/Fe3O4/PCL are discussed in detail. The EMWs absorbed by BCN/Fe3O4/PCL are dissipated by dielectric loss and magnetic loss. The shape memory mechanism of BCN/Fe3O4/PCL is based on the Fe3O4 and BCN nanotubes dissipating absorbed EMW energy into heat to boost the temperature of the composites, thereby responding to EMW remote control. This work introduces a new direction for SMPs induced by EMWs as potential candidates in the application of shape recovery in a restricted space.