Comparison and Optimization of Different Extraction Methods of Bound Phenolics from Jizi439 Black Wheat Bran

Foods. 2022 May 19;11(10):1478. doi: 10.3390/foods11101478.

Abstract

Diet rich in phenolics would potentially associate with multiple health benefits. Response surface methodology (RSM) was introduced to optimize the process of ultrasound- and microwave-assisted extraction of bound phenolics from the bran of a newly developed black wheat breeding line Jizi439 and then compared with the traditional alkaline method. The optimum conditions were found to be 66 °C, 48 min, and power 240 W for ultrasound-assisted extraction (UAE), and 120 s, power 420 W for microwave-assisted extraction (MAE), respectively. Total bound phenolic contents (TBPCs), determined by Folin-Ciocalteu reagent, were 8466.7 ± 240.9 μg gallic acid equivalents per gram (μg GAE/g) bran for UAE and 8340.7 ± 146.7 μg GAE/g bran for MAE under optimized conditions, which were both significantly higher than that of the traditional method (5688.9 ± 179.6 μg GAE/g) (p < 0.05). Antioxidant activities (AAs) were determined by DPPH and ABTS methods. UAE extracts showed the highest DPPH scavenging activity (77.5 ± 0.9%), while MAE extracts showed the highest ABTS scavenging activity (72.1 ± 0.6%). Both were significantly higher than that of the traditional method (69.6 ± 1.1% for DPPH and 65.9 ± 0.5% for ABTS) (p < 0.05). Total bound phenolics (TBPs) profiles were further analyzed by HPLC, and results indicated that ferulic acid was dominant, followed by vanillic acid and p-coumaric acid. The contents of each identified individual phenolics were significantly increased by ultrasound and microwave. In conclusion, UAE and MAE were comparable with each other in TBP yields and AAs; however, when taking operation time and energy consumption into consideration, MAE was more efficient than UAE. Our study suggested efficiency extraction methods for further use of bound phenolics as a healthy food ingredient.

Keywords: Jizi439 black wheat; bound phenolics; extraction; microwave; response surface methodology; ultrasound.