Estimating the initial absorbed dose of radiation in dried figs using EPR spectroscopy

Appl Radiat Isot. 2024 Jun:208:111286. doi: 10.1016/j.apradiso.2024.111286. Epub 2024 Mar 12.

Abstract

Dried figs were studied by Electron Paramagnetic Resonance (EPR) spectroscopy for identification of radiation treatment and dosage assessment. Gamma-irradiated samples show a multicomponent "sugar-like" EPR spectrum with line width of 6-8 mT, centered at g = 2.004. The investigation of the influence of the instrumental parameters microwave power and modulation amplitude on the EPR signal show saturation effect at microwave power above 2 mW and over modulation at modulation amplitude above 0.4 mT. Determination of the stability of radiation induced signals shows, that identification of previous radiation treatment is possible for a long time period after irradiation even more than one year. Dose-response curves of gamma-irradiated samples exhibits a linear response up to about 4 kGy and the saturation of the EPR signal at higher doses. A Single Aliquot Additive dosing method used to estimate the initial absorbed dose in irradiated dried fig flesh shows initial dose 0.25 kGy for the sample irradiated by 5 kGy and 3.7 kGy for those irradiated using 10 kGy. Taking into account the signal decay after 150 days of storage, the dose defined as initial should be 4.65 kGy for the 5 kGy irradiated sample and 8 kGy for that irradiated using 10 kGy.

Keywords: Dosage assessment; Dried figs; EPR; Food irradiation.

MeSH terms

  • Electron Spin Resonance Spectroscopy / methods
  • Ficus*
  • Gamma Rays