Boron ion beam generation using a self-sputtering planar magnetron

Rev Sci Instrum. 2014 Feb;85(2):02C302. doi: 10.1063/1.4824643.

Abstract

A boron ion source based on planar magnetron discharge with solid boron target has been developed. To obtain a sufficient conductivity of the boron target for high current discharge ignition, the target was heated to the temperature more than 350 °C. To reach this temperature, thermally isolated target was heated by low-current high-voltage magnetron DC discharge. Applying a high-current pulse (100 μs range) provides a self-sputtering mode of the discharge, which generates the boron plasma. Boron ion beam with current more than 150 mA was extracted from the plasma by applying an accelerating voltage of 20 kV. The boron ion fraction in the beam reached 95%, averaged over the pulse length, and the rest ions were working gas (Kr(+)). It was shown that "keeping alive" DC discharge completely eliminates a time delay of pulsed discharge current onset, and reduces the pulsed discharge minimal working pressure.