Effect of Strain Rate on the Transverse Tension and Compression Behavior of a Unidirectional Non-Crimp Fabric Carbon Fiber/Snap-Cure Epoxy Composite

Materials (Basel). 2021 Nov 29;14(23):7314. doi: 10.3390/ma14237314.

Abstract

The strain rate-dependent behavior of a unidirectional non-crimp fabric (UD-NCF) carbon fiber/snap-cure epoxy composite loaded along the transverse direction under quasi-static and dynamic conditions was characterized. Transverse tension and compression tests at quasi-static and intermediate strain rates were performed using hydraulic testing machines, while a split Hopkinson pressure bar (SHPB) apparatus was used for transverse compression tests at high strain rates. A pulse shaper was used on the SHPB apparatus to ensure dynamic equilibrium was achieved and that the test specimens deformed homogenously with a nearly constant strain rate. The transverse tensile strength at a strain rate of 16 s-1 increased by 16% when compared to that at quasi-static strain rates, while distinct localized fracture surface morphology was observed for specimens tested at different strain rates. The transverse compressive yield stress and strength at a strain rate of 325 s-1 increased by 94% and 96%, respectively, when compared to those at quasi-static strain rates. The initial fracture plane orientation for the transverse compression tests was captured with high-speed cameras and found to increase with increasing strain rate. The study provides an important data set for the strain rate-dependent response of a UD-NCF composite material, while the qualitative fracture surface observations provide a deeper understanding of the failure characteristics.

Keywords: dynamic testing; non-crimp fabric composites; pulse shaping; snap-cure epoxy; split Hopkinson pressure bar; transverse compression; transverse tension.