Pre-Processing Method for Contouring the Uptake Levels of [18F] FDG for Enhanced Specificity of PET Imaging of Solitary Hypermetabolic Pulmonary Nodules

J Clin Med. 2021 Apr 1;10(7):1430. doi: 10.3390/jcm10071430.

Abstract

Background: The paper presents a pre-processing method which, based on positron-emission tomography (PET) images of 18F-fluorodeoxyglucose ([18F] FDG) hypermetabolic pulmonary nodules, makes it possible to obtain additional visual characteristics and use them to enhance the specificity of imaging.

Material and methods: A retrospective analysis of 69 FDG-PET/CT scans of solitary hypermetabolic pulmonary nodules (40 cases of lung cancer and 29 benign tumours), where in each case, the standardised uptake value of the hottest voxel within the defined volume of interest was greater than 2.5 (SUVmax > 2.5). No diagnosis could be made based on these SUVmax values. All of the PET DICOM images were transformed by means of the pre-processing method for contouring the uptake levels of [18F] FDG (PCUL-FDG). Next, a multidimensional comparative analysis was conducted using a synthetic variable obtained by calculating the similarities based on the generalised distance measure for non-metric scaling (GDM2) from the pattern object. The calculations were performed with the use of the R language.

Results: The PCUL-FDG method revealed 73.9% hypermetabolic nodules definitively diagnosed as either benign or malignant lesions. As for the other 26.1% of the nodules, there was uncertainty regarding their classification (some had features suggesting malignancy, while the characteristics of others made it impossible to confirm malignancy with a high degree of certainty).

Conclusions: Application of the PCUL-FDG method enhances the specificity of PET in imaging solitary hypermetabolic pulmonary nodules. Images obtained using the PCUL-FDG method can serve as point of departure for automatic analysis of PET data based on convolutional neural networks.

Keywords: FDG; PET/CT; hypermetabolic pulmonary nodule; lung cancer.