Swiss Cheese Flavor Variability Based on Correlations of Volatile Flavor Compounds, Descriptive Sensory Attributes, and Consumer Preference

Foods. 2019 Feb 19;8(2):78. doi: 10.3390/foods8020078.

Abstract

Minimizing flavor variation in cheeses without perceived flavor defects in order to produce a consistent product is a challenge in the Swiss cheese industry. This study evaluated flavor variability based on correlations of volatile flavor compounds and sensory attributes. The headspace concentrations of volatile compounds were analyzed using selected ion flow tube-mass spectrometry (SIFT-MS), while the sensory attributes were evaluated using descriptive sensory analysis and consumer testing. The important discriminating volatile compounds were classified into five functional groups: sulfur-containing compounds (methyl mercaptan, hydrogen sulfide, dimethyl disulfide, dimethyl trisulfide, and methional), organic acids (propanoic acid, acetic acid, 3-methylbutanoic acid), aldehydes (3-methylbutanal, butanal, and 2-methylpropanal), a ketone (2,3-butanedione), and an ester (ethyl hexanoate). Correlations were identified among volatile compounds and between volatile compounds and sensory attributes. Only a small number of volatile compounds strongly correlated positively or negatively to a specific sensory attribute. Nutty malty, milkfat lactone, salty, umami, and sweet positively correlated to overall liking and nutty flavor liking of Swiss cheese. Evaluation of cheese flavor using correlations between volatile compounds and sensory attributes provided further understanding of the complexity of flavor and flavor variability among Swiss cheeses manufactured from different factories that can be used to improve flavor consistency of Swiss cheeses.

Keywords: Swiss cheese flavor; descriptive sensory analysis; odor activity values (OAVs); selected ion flow tube-mass spectrometry (SIFT-MS).