Source Apportionment and Model Applicability of Heavy Metal Pollution in Farmland Soil Based on Three Receptor Models

Toxics. 2023 Mar 13;11(3):265. doi: 10.3390/toxics11030265.

Abstract

The identification of the source of heavy metal pollution and its quantification are the prerequisite of soil pollution control. The APCS-MLR, UNMIX and PMF models were employed to apportion pollution sources of Cu, Zn, Pb, Cd, Cr and Ni of the farmland soil in the vicinity of an abandoned iron and steel plant. The sources, contribution rates and applicability of the models were evaluated. The potential ecological risk index revealed greatest ecological risk from Cd. The results of source apportionment illustrated that the APCS-MLR and UNMIX models could verify each other for accurate allocation of pollution sources. The industrial sources were the main sources of pollution (32.41~38.42%), followed by agricultural sources (29.35~31.65%) and traffic emission sources (21.03~21.51%); and the smallest proportion was from natural sources of pollution (11.2~14.42%). The PMF model was easily affected by outliers and its fitting degree was not ideal, leading to be unable to get more accurate results of source analysis. The combination of multiple models could effectively improve the accuracy of pollution source analysis of soil heavy metals. These results provide some scientific basis for further remediation of heavy metal pollution in farmland soil.

Keywords: APCS-MLR; PMF; UNMIX; heavy metals; source apportionment.