Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My NCBI Filters

Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
1988 1
1992 1
1998 1
2000 1
2001 1
2005 2
2006 4
2008 1
2009 2
2010 3
2011 1
2012 1
2014 2
2015 1
2016 3
2017 2
2018 1
2019 1
2020 1
2021 1
2022 2
2024 1

Text availability

Article attribute

Article type

Publication date

Search Results

31 results

Results by year

Filters applied: . Clear all
Page 1
Cranial Nerve Schwannomas: Diagnostic Imaging Approach.
Skolnik AD, Loevner LA, Sampathu DM, Newman JG, Lee JY, Bagley LJ, Learned KO. Skolnik AD, et al. Radiographics. 2016 Sep-Oct;36(5):1463-77. doi: 10.1148/rg.2016150199. Epub 2016 Aug 19. Radiographics. 2016. PMID: 27541436 Review.
Regulation of K(ATP) Channel Trafficking in Pancreatic beta-Cells by Protein Histidine Phosphorylation.
Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY. Srivastava S, et al. Diabetes. 2018 May;67(5):849-860. doi: 10.2337/db17-1433. Epub 2018 Feb 12. Diabetes. 2018. PMID: 29440278 Free PMC article.
PHPT-1(-/-) mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of K(ATP) channels to the plasma membrane in pancreatic beta-cells in response to low glucose and leptin and resembled patients with congenital hyperinsulinism (CHI). The defect i …
PHPT-1(-/-) mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of K(ATP) channels to the plasma membra …
Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis.
Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik EY. Di L, et al. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1541-6. doi: 10.1073/pnas.0910133107. Epub 2010 Jan 8. Proc Natl Acad Sci U S A. 2010. PMID: 20080610 Free PMC article.
The calcium-activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative membrane potential, which provides an electrochemical gradient to drive Ca(2+) influx. ...
The calcium-activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative …
The phosphatidylinositol 3-phosphate phosphatase myotubularin- related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1.
Srivastava S, Li Z, Lin L, Liu G, Ko K, Coetzee WA, Skolnik EY. Srivastava S, et al. Mol Cell Biol. 2005 May;25(9):3630-8. doi: 10.1128/MCB.25.9.3630-3638.2005. Mol Cell Biol. 2005. PMID: 15831468 Free PMC article.
This inhibition is specific; MTM1, a closely related MTM, did not inhibit K(Ca)3.1. However, a chimeric MTM1 in which the MTM1 CC domain was swapped for the MTMR6 CC domain inhibited K(Ca)3.1, indicating that MTM CC domains are sufficient to confer target specificit …
This inhibition is specific; MTM1, a closely related MTM, did not inhibit K(Ca)3.1. However, a chimeric MTM1 in which the MTM1 CC dom …
Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1.
Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, Skolnik EY. Srivastava S, et al. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14442-6. doi: 10.1073/pnas.0803678105. Epub 2008 Sep 16. Proc Natl Acad Sci U S A. 2008. PMID: 18796614 Free PMC article.
The calcium activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative membrane potential, which provides an electrochemical gradient to drive Ca(2+) influx. ...
The calcium activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative …
Efficacy of iGlarLixi in adults with type 2 diabetes inadequately controlled (glycated haemoglobin ≥8%, ≥64 mmol/mol) on two oral antidiabetes drugs: Post hoc analysis of the LixiLan-O randomized trial.
Davies MJ, Rosenstock J, Ali A, Russell-Jones D, Souhami E, Palmer K, Ji C, Niemoeller E, Skolnik N. Davies MJ, et al. Diabetes Obes Metab. 2022 Jan;24(1):34-41. doi: 10.1111/dom.14543. Epub 2021 Oct 6. Diabetes Obes Metab. 2022. PMID: 34617398 Free PMC article. Clinical Trial.
The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells.
Srivastava S, Di L, Zhdanova O, Li Z, Vardhana S, Wan Q, Yan Y, Varma R, Backer J, Wulff H, Dustin ML, Skolnik EY. Srivastava S, et al. Mol Biol Cell. 2009 Sep;20(17):3783-91. doi: 10.1091/mbc.e09-05-0390. Epub 2009 Jul 8. Mol Biol Cell. 2009. PMID: 19587117 Free PMC article.
The Ca(2+)-activated K(+) channel KCa3.1 is required for Ca(2+) influx and the subsequent activation of T-cells. ...
The Ca(2+)-activated K(+) channel KCa3.1 is required for Ca(2+) influx and the subsequent activation of T-cells. ...
Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation.
Di L, Srivastava S, Zhdanova O, Sun Y, Li Z, Skolnik EY. Di L, et al. J Biol Chem. 2010 Dec 10;285(50):38765-71. doi: 10.1074/jbc.M110.168070. Epub 2010 Sep 30. J Biol Chem. 2010. PMID: 20884616 Free PMC article.
Although they comprise a family of 10 genes, NDPK-A and -B are ubiquitously expressed and account for most of the NDPK activity. We previously showed that NDPK-B activates the K(+) channel KCa3.1 via histidine phosphorylation of the C terminus of KCa3.1, which is required …
Although they comprise a family of 10 genes, NDPK-A and -B are ubiquitously expressed and account for most of the NDPK activity. We previous …
Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure.
Abu-Taha IH, Heijman J, Hippe HJ, Wolf NM, El-Armouche A, Nikolaev VO, Schäfer M, Würtz CM, Neef S, Voigt N, Baczkó I, Varró A, Müller M, Meder B, Katus HA, Spiger K, Vettel C, Lehmann LH, Backs J, Skolnik EY, Lutz S, Dobrev D, Wieland T. Abu-Taha IH, et al. Circulation. 2017 Feb 28;135(9):881-897. doi: 10.1161/CIRCULATIONAHA.116.022852. Epub 2016 Dec 7. Circulation. 2017. PMID: 27927712 Free article.
31 results