Ecological effects of fear: How spatiotemporal heterogeneity in predation risk influences mule deer access to forage in a sky-island system

Ecol Evol. 2019 Jun 2;9(12):7213-7226. doi: 10.1002/ece3.5291. eCollection 2019 Jun.

Abstract

Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky-island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green-up), or the occurrence of cougars (Puma concolor). Female mule deer used available green-up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky-island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.

Keywords: NDVI; RSF; cougar; mule deer; predator–prey; sky islands.