Identification Method for Internal Forces of Segmental Tunnel Linings via the Combination of Laser Scanning and Hybrid Structural Analysis

Sensors (Basel). 2022 Mar 21;22(6):2421. doi: 10.3390/s22062421.

Abstract

This paper provides a new solution to identify the internal forces of segmental tunnel linings by combining laser scanning and hybrid structural analysis. First, a hybrid structural analysis method for quantifying the internal forces based on displacement monitoring is established, which requires comprehensive displacement monitoring with high precision and a complete trace history. Motivated by the development of laser scanning, two remedial solutions are proposed for typically insufficient engineering conditions, i.e., lack of displacement developing process and poor accuracy of measurements, which is highlighted in this paper. Therefore, with the help of remedial solutions, the structural analysis is able to be adopted with the application of laser scanning. The tool for developing remedial solutions is the first-order theory of slender circular arches. Virtual tests, based on a calibrated finite element model, were performed to verify the feasibility of the presented hybrid analysis and remedial solutions. In addition, parametric analyses were conducted to study the error propagation from laser scanning to the results of hybrid analysis. The resolution and measurement noise of laser scanning were investigated and discussed. On this basis, advice on combining laser scanning and hybrid structural analysis is proposed. Finally, on-site application of the hybrid analysis on an actual tunnel is presented and discussed.

Keywords: bending moments; first-order arch theory; hybrid analysis; segmental lining.