Experimental Study on Basic Mechanical Properties of PVA Fiber-Reinforced Coral Cement-Based Composites

Materials (Basel). 2023 Apr 6;16(7):2914. doi: 10.3390/ma16072914.

Abstract

In order to improve the brittle characteristics of coral cement-based composites and increase their toughness, an experimental study was carried out on the basic mechanical properties of PVA (polyvinyl alcohol) fiber-reinforced coral cement-based composites, taking into account the fiber content and length-to-diameter ratio (L/D). The results showed that PVA fibers can effectively improve the mechanical properties of concrete, especially its tensile strength. At the same time, PVA fibers improved the damage characteristics of cement-based composites and had obvious toughening and brittleness reduction effects. The PVA fibers, with a volume content of 1.5% and an L/D of 225, had the best performance in reinforcing the overall performance of the coral cement-based composites. Too many PVA fibers or a large length-to-diameter ratio would make it difficult for the fibers to contribute to toughness and cracking resistance and even cause defects in the matrix, reducing the mechanical properties. The tensile stress-strain curves of PVA fiber-reinforced coral cement-based composites were consistent with the trilinear constitutive model curves and showed the tensile characteristic of strain hardening after the occurrence of the main cracks.

Keywords: coral cement-based composites; ductility; polyvinyl alcohol fiber; tensile strength; toughen.