The Effect of Compression Pressure on the First Layer Surface Roughness and Delamination of Metformin and Evogliptin Bilayer and Trilayer Tablets

Pharmaceuticals (Basel). 2023 Oct 26;16(11):1523. doi: 10.3390/ph16111523.

Abstract

The objectives of this study were to evaluate the delamination of convex-shaped metformin HCl (MF) and evogliptin tartrate (EG) multi-layer tablets depending on the pre-compression and main compression pressures and simultaneously correlate these results with those of a surface roughness analysis. Free-flowing MF and EG (median diameters of 38.3 and 44.7 μm, respectively) granules prepared using the wet granulation method were pre-compressed and subsequently compressed into bilayer and trilayer tablets using a universal testing machine. The compaction force required to break the tablets increased linearly as the main compression pressure increased (30-150 MPa). Conversely, the interfacial strength and compaction breaking force decreased as the pre-compression pressure increased (10-110 MPa). A surface roughness analysis employing a profilometer revealed that the first layer (MF) roughness drastically decreased from 5.89 to 0.51 μm (Ra, arithmetic average of profile height deviations from the mean line) as the pre-compression pressure increased from 10 to 150 MPa in the bilayer tablet. Accordingly, the decrease in the roughness of the first layer reduced the inter-penetration at the interface, as observed via energy dispersive spectrometer (EDS)-equipped scanning electron microscopy, decreasing the interfacial bonding strength and causing delamination of the MF/EG multi-layer tablets. These findings indicate the significance of roughness control in the actual preparation of multi-layer tablets and the usefulness of profilometer- and EDS-based surface analyses for interpreting the delamination of multi-layer tablets.

Keywords: delamination; energy dispersive spectrometry analysis; inter-penetration of particles; interfacial strength; multi-layer tablet; profilometer; surface roughness.