Texture Evolution during Recrystallization and Grain Growth in Non-Oriented Electrical Steel Produced by Compact Strip Production Process

Materials (Basel). 2021 Dec 28;15(1):197. doi: 10.3390/ma15010197.

Abstract

Evolution of texture and α*-fiber texture formation mechanism of Fe-0.65%Si non-oriented electrical steel produced by Compact Strip Production (CSP) process during all the thermo-mechanical processing steps were investigated using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) techniques. Columnar crystal structure of cast slab is fine and well-developed. Textures of the hot-rolled band are quite different in the thickness direction. During annealing of cold-rolled sheet, γ-fiber texture grains would nucleate and grow preferentially, and α*-fiber texture grains mainly nucleate and grow in the shear zone of α-fiber texture of cold-rolled sheet. During the recrystallization process, γ-fiber texture gradually concentrated to {111}<112>, and γ and α*-fiber texture increased significantly. {111}<112> texture priority nucleation at the initial stage of recrystallization. Due to the advantages of nucleation position and quantity, the content of α*-fiber texture is greater than {111}<112> texture in the mid-recrystallization. During grain growth process, {111}<112> oriented grains would grow selectively by virtue of higher mobility, sizes and quantity advantages than that of {411}<148 > and {100}<120>, resulting in the gradual increase of γ-fiber texture and the decline of α *-fiber texture.

Keywords: Compact Strip Production; grain growth; non-oriented electrical steel; recrystallization; texture; α*-fiber texture.