A solitary wave-based sensor to monitor the setting of fresh concrete

Sensors (Basel). 2014 Jul 14;14(7):12568-84. doi: 10.3390/s140712568.

Abstract

We present a proof-of-principle study about the use of a sensor for the nondestructive monitoring of strength development in hydrating concrete. The nondestructive evaluation technique is based on the propagation of highly nonlinear solitary waves (HNSWs), which are non-dispersive mechanical waves that can form and travel in highly nonlinear systems, such as one-dimensional particle chains. A built-in transducer is adopted to excite and detect the HNSWs. The waves are partially reflected at the transducer/concrete interface and partially transmitted into the concrete. The time-of-flight and the amplitude of the waves reflected at the interface are measured and analyzed with respect to the hydration time, and correlated to the initial and final set times established by the penetration test (ASTM C 403). The results show that certain features of the HNSWs change as the concrete curing progresses indicating that it has the potential of being an efficient, cost-effective tool for monitoring strengths/stiffness development.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.