Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields

Heliyon. 2019 Aug 6;5(8):e02224. doi: 10.1016/j.heliyon.2019.e02224. eCollection 2019 Aug.

Abstract

In this paper, we have to apply the Dirac-Weyl equation to find the analytical energy eigenvalues of the graphene quantum dot interacting in the presence of AB-flux field and external magnetic field. We find that the energy eigenvalue of the graphene quantum dot decreases with both magnetic and AB-flux field but the effect of AB-flux field is more dominant. By ameliorating the intensity of the AB-flux field and keeping the magnetic field constant, the quantum-dot states entangled to produce Landau Levels. We show that besides using the graphene sheet and external magnetic field, the Aharonov-Bohm AB-flux field could as well be used to manipulate the carriers state energies in graphene.

Keywords: AB-flux field; Dirac-Weyl equation; Energy eigenvalues; Graphene quantum dot; Landau Levels; Quantum mechanics.