A Reliability Scheduling Algorithm for the Static Segment of FlexRay on Vehicle Networks

Sensors (Basel). 2018 Nov 5;18(11):3783. doi: 10.3390/s18113783.

Abstract

FlexRay is a next-generation in-vehicle communication protocol which works in real time with flexibility. The most common applications in FlexRay are high bandwidth. X-by-wire applications, such as brake by wire and throttle by wire. However, there is no mechanism which can prevent transient faults in the application layer of FlexRay. If a transient fault occurs during driving, this would be very dangerous; therefore, we propose a fast reliability scheduling algorithm (FRSA) to improve the communication reliability of FlexRay. The proposed method reduces the probability of transient faults in one clock cycle by using a retransmission mechanism to recover the transient errors, and further improves computational complexity using the lookup table method to ensure system reliability. In this paper, we analyze a related literature to establish the system reliability constraints needed to evaluate the necessary time and slot usage, and the proposed cost function is used to evaluate the performance and efficiency when the number of messages is increased. Experimental results show that the proposed FRSA reduces execution time by an average 70.76% and cost by an average 13.33% more than the other existing methods. This method can be useful to others, especially regarding research about periodic time-triggered communication systems.

Keywords: FlexRay; communication reliability; re-transmission mechanism; scheduling; time-triggered; transient fault.