A Flexible Coding Scheme Based on Block Krylov Subspace Approximation for Light Field Displays with Stacked Multiplicative Layers

Sensors (Basel). 2021 Jul 4;21(13):4574. doi: 10.3390/s21134574.

Abstract

To create a realistic 3D perception on glasses-free displays, it is critical to support continuous motion parallax, greater depths of field, and wider fields of view. A new type of Layered or Tensor light field 3D display has attracted greater attention these days. Using only a few light-attenuating pixelized layers (e.g., LCD panels), it supports many views from different viewing directions that can be displayed simultaneously with a high resolution. This paper presents a novel flexible scheme for efficient layer-based representation and lossy compression of light fields on layered displays. The proposed scheme learns stacked multiplicative layers optimized using a convolutional neural network (CNN). The intrinsic redundancy in light field data is efficiently removed by analyzing the hidden low-rank structure of multiplicative layers on a Krylov subspace. Factorization derived from Block Krylov singular value decomposition (BK-SVD) exploits the spatial correlation in layer patterns for multiplicative layers with varying low ranks. Further, encoding with HEVC eliminates inter-frame and intra-frame redundancies in the low-rank approximated representation of layers and improves the compression efficiency. The scheme is flexible to realize multiple bitrates at the decoder by adjusting the ranks of BK-SVD representation and HEVC quantization. Thus, it would complement the generality and flexibility of a data-driven CNN-based method for coding with multiple bitrates within a single training framework for practical display applications. Extensive experiments demonstrate that the proposed coding scheme achieves substantial bitrate savings compared with pseudo-sequence-based light field compression approaches and state-of-the-art JPEG and HEVC coders.

Keywords: Krylov subspace; convolutional neural network; layered tensor 3D displays; light field; lossy compression; low-rank approximation; randomized block Krylov singular value decomposition; rank analysis; rate distortion.