Monotonic load datasets for additively manufactured thermoplastic reinforced composites

Data Brief. 2020 Feb 19:29:105295. doi: 10.1016/j.dib.2020.105295. eCollection 2020 Apr.

Abstract

In additive manufacturing (AM), thermoplastic components made by fused deposition modeling (FDM) offer low strength and stiffness, as required for fully functional and load-bearing parts. Composite materials are a practical solution to improve mechanical properties [1,2]. A new technology to reinforce thermoplastics with continuous fibers has been developed recently by Markforged [3]. It introduces continuous fiber to reinforce a thermoplastic matrix, thus, taking static mechanical performance close to Aluminum alloys [4]. These printers for continuous fiber reinforced thermoplastic composites (CFRTPC) have taken this technology to a whole new level in terms of mechanical properties and efficient production. Mechanical properties under monotonic load were studied for different kinds of printing configurations. Tensile monotonic tests under controlled displacement were performed until rupture. Raw data showing tensile monotonic behavior provides the researchers with the ability to perform data fitting, to validate more advanced constitutive models, or to perform a further interpretation of the data, among others. Data is presented here as plain text files without any analysis. A preliminary data analysis has been published already in [5]. The text files contain information about time, displacement, and force. The data is useful for design engineers and researchers involved with AM.

Keywords: Additive manufacturing (AM); Continuous fiber reinforced thermoplastic composites (CFRTPC); Fused deposition modeling (FDM); Mechanical properties; Stress in thermoplastics.