Effect of driving characteristics and ambient temperature on the particle emissions during engine restart of spark ignition hybrid electric vehicle

Sci Rep. 2023 Oct 13;13(1):17330. doi: 10.1038/s41598-023-44497-6.

Abstract

In this study, we analyzed particle emission characteristics in the engine restart (ER) phase of a hybrid electric vehicle (HEV) based on driving characteristics and ambient temperature. The ambient temperature was set at intervals of 10 °C from - 10 °C to 20 °C. ES-582.1, PPS-M, EEPS, and temperature sensors were installed to acquire hybrid control unit (HCU), particle number (PN), PN size distribution, and exhaust temperature data. The on board test route was conducted in the South Korean real driving emissions (RDE) certification route, consisting of urban, rural, and motorway phases. The test HEV was controlled by dividing the engine operation during driving into ER and normal phases. Within 5 s immediately after ER, it emitted PN equivalent to 90% of the total test emissions. The count of ER was higher in urban phases compared to rural and motorway phases. As the ambient temperature decreased, PN emissions increased regardless of the driving mode, but the ER PN percent decreased. Immediately after ER, PN emissions increased rapidly, peaked at around 2-3 s, and then decreased thereafter. The average engine-off time before ER was the longest in the urban phase, and the average ER exhaust temperature was the highest in the motorway phase. The size fraction of large particles increased as the ambient temperature decreased.