Analysis of Resistance to Wind Suction of Flat Roof Coverings Glued with Polyurethane Adhesives

Materials (Basel). 2023 Nov 12;16(22):7135. doi: 10.3390/ma16227135.

Abstract

The article analyses the impact of wind suction on roof coverings glued with polyurethane adhesives to flat roofs, i.e., roofs with an up to 20% slope. The impact of the cyclical wind was simulated in fatigue tests, gradually increasing the test pressure in repeated sequences until the first delamination occurred. The tests were carried out for eight test sets, with concrete and trapezoidal sheets used as a construction substrate, on whose surface thermal insulation layers were glued with polyurethane adhesive; the thermal insulation layers were EPS (expanded polystyrene) and PIR (polymer mainly of polyisocyanurate groups), respectively, followed by flexible sheets, i.e., a laminated PVC membrane (polyvinylchloride) and an EPDM (terpolymer of ethylene, propylene and a diene with a residual unsaturated portion of diene in the side chain)-type rubber-based membrane. The test results were compared with the functional requirements determined with computational simulation methods for the maximum wind load values on the example of wind loads for Poland. The tests confirmed that some polyurethane adhesives could ensure the operation of flexible sheets used as flat roof coverings that are failure-free from the point of view of resistance to wind suction.

Keywords: fatigue laboratory tests; flat roof coverings; flexible sheets for waterproofing; numerical simulations; polyurethane adhesives; resistance to wind suction.

Grants and funding

This research received no external funding.