Serum small extracellular vesicles promote M1 activation of microglia after cerebral ischemia/reperfusion injury

Neurosci Lett. 2022 Jan 1:766:136307. doi: 10.1016/j.neulet.2021.136307. Epub 2021 Nov 1.

Abstract

Microglial M1 activation is detrimental to stroke outcomes. Recent studies have shown that circulating small extracellular vesicles (sEVs) can deliver miRNAs to target cells and regulate recipient cell functions. Herein, we tested the hypothesis that miRNA delivery by serum sEVs after cerebral ischemia/reperfusion (I/R) injury promote microglial M1 activation, demonstrating that serum sEVs from middle cerebral artery occlusion (MCAO) mice promoted proliferation and M1 activation of BV2 microglia. To explore the underlying mechanism of serum sEVs-mediated microglial activation in the early phase of cerebral I/R injury, we examined the effects of ischemic brain injury on the serum sEVs miRNAs profile in a mouse MCAO model using small RNAseq. Of the 1257 detected miRNA replications, the levels of 72 were significantly modulated. Bioinformatics analysis revealed that a panel of miRNAs was closely associated with inflammation, and in vitro experiments demonstrated that serum sEVs from MCAO mice could effectively transfer inflammatory miRNAs to BV2 microglia. Collectively, our data suggested that miRNAs delivered by serum sEVs after cerebral I/R injury promoted microglial M1 activation. The identification of microglial activation regulators in future studies will give rise to more effective treatments for stroke.

Keywords: Activation; Cerebral ischemia/reperfusion; MiRNAs; Microglia; Serum small extracellular vesicles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Ischemia / metabolism*
  • Brain Ischemia / pathology
  • Extracellular Vesicles / metabolism*
  • Infarction, Middle Cerebral Artery / metabolism
  • Infarction, Middle Cerebral Artery / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / metabolism*
  • Microglia / metabolism*
  • Reperfusion Injury / metabolism*
  • Reperfusion Injury / pathology

Substances

  • MicroRNAs