Transformative skeletal motion analysis: optimization of exercise training and injury prevention through graph neural networks

Front Neurosci. 2024 Mar 28:18:1353257. doi: 10.3389/fnins.2024.1353257. eCollection 2024.

Abstract

Introduction: Exercise is pivotal for maintaining physical health in contemporary society. However, improper postures and movements during exercise can result in sports injuries, underscoring the significance of skeletal motion analysis. This research aims to leverage advanced technologies such as Transformer, Graph Neural Networks (GNNs), and Generative Adversarial Networks (GANs) to optimize sports training and mitigate the risk of injuries.

Methods: The study begins by employing a Transformer network to model skeletal motion sequences, facilitating the capture of global correlation information. Subsequently, a Graph Neural Network is utilized to delve into local motion features, enabling a deeper understanding of joint relationships. To enhance the model's robustness and adaptability, a Generative Adversarial Network is introduced, utilizing adversarial training to generate more realistic and diverse motion sequences.

Results: In the experimental phase, skeletal motion datasets from various cohorts, including professional athletes and fitness enthusiasts, are utilized for validation. Comparative analysis against traditional methods demonstrates significant enhancements in specificity, accuracy, recall, and F1-score. Notably, specificity increases by ~5%, accuracy reaches around 90%, recall improves to around 91%, and the F1-score exceeds 89%.

Discussion: The proposed skeletal motion analysis method, leveraging Transformer and Graph Neural Networks, proves successful in optimizing exercise training and preventing injuries. By effectively amalgamating global and local information and integrating Generative Adversarial Networks, the method excels in capturing motion features and enhancing precision and adaptability. Future research endeavors will focus on further advancing this methodology to provide more robust technological support for healthy exercise practices.

Keywords: Generative Adversarial Network; Transformer; assistive devices; injury prediction; training optimization.

Grants and funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.