Functional Investigation and Two-sample Mendelian Randomization Study of Inguinal Hernia Hub Genes Obtained by Bioinformatics Analysis

Curr Comput Aided Drug Des. 2024 Apr 5. doi: 10.2174/0115734099282407240325054745. Online ahead of print.

Abstract

Background: Inguinal hernia in adults is a common and frequent disease in surgery, prone to occur in the elderly or in those with a weak abdominal wall. Despite its prevalence, Molecular mechanisms underlying inguinal hernia formation are unclear.

Objective: This study aims to identify potential gene markers for inguinal hernia and available drugs.

Methods: Pubmed2Ensembl text mining was used to identify genes related to "inguinal hernia" keywords. The GeneCodis system was used to specify GO biological process terms and KEGG pathways defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG). The STRING tool was used to construct protein-protein interaction networks, which were then visualized using Cytoscape.CytoHubba and Molecular Complex Detection were utilized to analyze the module (MCODE). A GO and KEGG analysis of gene modules was conducted using the DAVID platform database. Hub genes are those that are concentrated in prominent modules. The druggene interaction database was also used to identify potential drugs for inguinal hernia patients based on their interactions between the hub genes. Finally, a Mendelian randomization study was conducted based on genome-wide association studies to determine whether hub genes cause inguinal hernias.

Results: The identification of 96 genes associated with inguinal hernia was carried out using text mining techniques. It was constructed using PPI networks with 80 nodes and 476 edges, and the sequence of the genes was performed using CytoHubba. MCODE analysis identified three gene modules. Three modules contain 37 genes clustered as hub candidate genes associated with inguinal hernia patients. The PI3K-Akt, MAPK, AGE-RAGE, and HIF-1 pathways were found to be enriched in signaling pathways. Sixteen of the 37 genes were found to be targetable by 30 existing drugs. The relationship between hub genes and inguinal hernia was examined using Mendelian randomization. The research revealed nine genes that may be connected with inguinal hernia, such as POMC, CD40LG, TFRC, VWF, LOX, IGF2, BRCA1, TNF, and HGF in the plasma. By inverse variance weighting, ALB was associated with an increased risk of inguinal hernia with an OR of 1.203 (OR [95%] = 1,04 [1.012 to 1.089], p = 0.008).

Conclusion: We identified potential hub genes for inguinal hernia, predicted potential drugs for inguinal hernia, and reverse-validated potential genes by Mendelian randomization. This may provide further insights into asymptomatic pre-diagnostic methods and contribute to studies to understand the molecular mechanisms of risk genes associated with inguinal hernia.

Keywords: Inguinal hernia; bioinformatics; drug discovery.; gene; mendelian randomization; text mining.