A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries

Adv Mater. 2021 Sep;33(35):e2101760. doi: 10.1002/adma.202101760. Epub 2021 Jul 19.

Abstract

Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.

Keywords: Internet of Things; energy density; microbatteries; microdevices; microrobotics; packaging.