[Development of a planned and monitoring robotic assistance and automation for application in orthopedics and trauma surgery]

Chirurgie (Heidelb). 2023 Apr;94(4):312-317. doi: 10.1007/s00104-023-01844-7. Epub 2023 Feb 20.
[Article in German]

Abstract

Robot-assisted surgery offers many advantages with respect to precision and facilitation in medicine, whereby the physician controls the system externally by guiding the movement of the robot during the operation. Despite training and experience, operating errors by the user cannot be excluded. In addition, for the established systems the precise guidance of instruments along complexly shaped surfaces, e.g. for milling or cutting, depends on the skills of the operator. This article presents an expansion of the established robotic assistance for smooth movement along randomly shaped surfaces and introduces a movement automation which goes beyond the assistance systems used so far. Both approaches aim to improve the accuracy in surface-dependent medical procedures and avoid operator errors. Special applications with these requirements are, for example the execution of precise incisions or removal of adhering tissue in cases of spinal stenosis. A segmented computed tomography (CT) or magnetic resonance imaging (MRI) scan serves as the basis for a precise implementation. For robotic assistance externally guided by the operator the commands given to the robot are tested and monitored without delay so that adaptation of the movement exactly corresponding to the surface can be carried out. In contrast, the automation for the established systems differs in that the movement along the desired surface is roughly planned by the surgeon preoperatively by marking prominent points on the CT or MRI scan. From this a suitable track, including the appropriate instrument orientation, is calculated and, after checking the results, the robot finally carries this out autonomously. Based on this procedure, which is planned by humans and carried out by robots, errors are minimized, respective advantages are maximized and costly training on correct steering of robots becomes obsolete. The evaluation is carried out both in simulation and also experimentally on a complexly shaped 3D-printed lumbar vertebra from a CT scan with a Stäubli TX2-60 manipulator (Stäubli Tec-Systems GmbH Robotics, Bayreuth, Germany); however, the procedures are also transferable to and applicable on every other robotic system that covers the necessary working space, such as the da Vinci system.

Die roboterassistierte Chirurgie bietet viele Vorteile hinsichtlich Präzision und Erleichterung in der Medizin, wobei der Arzt das System extern steuert, indem dieser die Bewegungen des Roboters während der Operation vorgibt. Trotz Schulungen und Erfahrung können Bedienfehler durch den Anwender nicht ausgeschlossen werden. Zudem hängt bei den etablierten Systemen das präzise Führen von Werkzeugen entlang komplex geformter Oberflächen, z. B. zum Fräsen oder Schneiden, von den Fähigkeiten des Bedieners ab. In diesem Beitrag wird zum einen eine Erweiterung der etablierten Roboterassistenz zur gleichmäßigen Bewegung entlang beliebig geformter Oberflächen vorgestellt und zum anderen eine Bewegungsautomation eingeführt, die über die bislang eingesetzten Assistenzsysteme hinausgeht. Beide Ansätze sollen insbesondere die Genauigkeit bei oberflächentreuen medizinischen Verfahren verbessern und Bedienfehler vermeiden. Für spezielle Anwendungen mit diesen Anforderungen sind beispielsweise das Ausführen präziser Schnitte oder das Entfernen anhaftenden Gewebes im Fall von Wirbelsäulenstenose zu nennen. Für eine präzise Umsetzung dient jeweils ein segmentierter Computertomographie(CT)- oder Magnetresonanztomographie(MRT)-Scan als Grundlage. Bei der vom Bediener extern gesteuerten Roboterassistenz werden die an den Roboter gegebenen Kommandos verzögerungsfrei geprüft und überwacht, sodass eine oberflächentreue Adaption der Bewegung stattfinden kann. Im Gegensatz dazu setzt sich die Automation zu den etablierten Systemen dahin gehend ab, dass präoperativ durch den Chirurgen die Bewegung entlang der gewünschten Oberflächen grob durch das Markieren markanter Punkte im CT- oder MRT-Scan geplant wird, daraus eine geeignete Bahn samt passender Werkzeugorientierung berechnet wird und anschließend nach einer Prüfung der Ergebnisse der Roboter diese selbständig durchführt. Durch dieses menschgeplante und roboterdurchgeführte Verfahren werden Fehler minimiert, jeweilige Vorteile maximiert und kostspielige Schulungen zum korrekten Steuern von Robotern hinfällig. Die Evaluation erfolgt sowohl in Simulation als auch im Experiment an einem komplex geformten 3‑D-gedruckten Lendenwirbel aus einem CT-Scan mit einem Stäubli TX2-60-Manipulator (Stäubli Tec-Systems GmbH Robotics, Bayreuth, Deutschland). Die Verfahren sind jedoch ebenfalls auf jedes andere Robotersystem, das den notwendigen Arbeitsraum abdeckt, wie bspw. das DaVinci -System, übertragbar und anwendbar.

Keywords: Complex surfaces; Instrument orientation; Movement automation; Operating error; Precision.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Germany
  • Humans
  • Orthopedic Procedures*
  • Orthopedics*
  • Robotic Surgical Procedures* / methods
  • Robotics* / methods