How generalisable are material extrusion additive manufacturing parameter optimisation studies? A systematic review

Heliyon. 2022 Nov 18;8(11):e11592. doi: 10.1016/j.heliyon.2022.e11592. eCollection 2022 Nov.

Abstract

Goal: Material extrusion additive manufacturing, is a relatively inexpensive and popular manufacturing technique that can be used to fabricate complex 3D geometries at low cost. However, parts produced by this process are often characterised by poor quality, particularly with regards to dimensional and geometrical accuracy. This review provides a comprehensive analysis of experimental studies conducted over the past 25 years that have aimed to improve these quality variables via printing parameter optimisation.

Methods: An initial non systematic scoping study coupled with a subsequent scientific systematic literature review protocol to identify experimental studies on dimensional quality in material extrusion additive manufacturing was conducted. 127 individual studies are identified and analysed.

Results: The authors critically analysed the relevant and salient studies (127) by evaluating which machines; materials; sample sizes; artefact designs; and most importantly what printing parameters have been used in the experimental investigations. A total of (79) machine variations were used; ABS and PLA made up (43%) and (36%) of materials investigated respectively; (84%) of studies had sample sizes of less than (40); and artefact dimensions ranged from (10-270 mm) (1-240 mm), and (3.5-220 mm) in the X, Y, and Z axes respectively. In many cases, the relationships between printing parameters (independent variables) and dimensional qualities (dependent variables) were found to be uncertain or even contradictory between studies.

Conclusions: A wide range of studies have sought to optimise parameters (e.g., Nozzle gap height, print head velocity, filament volumetric velocity) to address dimensional quality issues in ME AM. However, the authors have demonstrated that a lack of agreement among studies limits the generalisability of these parameter optimisation findings. More recent studies have considered the local dimensional variance of deposited single strands. This offers greater potential to understand the underlying causes of component defects and inaccuracy.

Keywords: Dimensional accuracy; Filament behaviour; Fused deposition modelling; Material extrusion additive manufacturing; Printing parameters; Review.

Publication types

  • Review