Transient Mechanical Response of Lung Airway Tissue during Mechanical Ventilation

Bioengineering (Basel). 2016 Jan 5;3(1):4. doi: 10.3390/bioengineering3010004.

Abstract

Patients with acute lung injury, airway and other pulmonary diseases often require Mechanical Ventilation (MV). Knowledge of the stress/strain environment in lung airway tissues is very important in order to avoid lung injuries for patients undergoing MV. Airway tissue strains responsible for stressing the lung's fiber network and rupturing the lung due to compliant airways are very difficult to measure experimentally. Multi-level modeling is adopted to investigate the transient mechanical response of the tissue under MV. First, airflow through a lung airway bifurcation (Generation 4-6) is modeled using Computational Fluid Dynamics (CFD) to obtain air pressure during 2 seconds of MV breathing. Next, the transient air pressure was used in structural analysis to obtain mechanical strain experienced by the airway tissue wall. Structural analysis showed that airway tissue from Generation 5 in one bifurcation can stretch eight times that of airway tissue of the same generation number but with different bifurcation. The results suggest sensitivity of load to geometrical features. Furthermore, the results of strain levels obtained from the tissue analysis are very important because these strains at the cellular-level can create inflammatory responses, thus damaging the airway tissues.

Keywords: finite element analysis; lung airway; mechanical strains; mechanical ventilation.