Variation of electrochemical capacitor performance with Room Temperature Ionic Liquid electrolyte viscosity and ion size

Phys Chem Chem Phys. 2012 May 7;14(17):6094-100. doi: 10.1039/c2cp40089h. Epub 2012 Mar 26.

Abstract

The use of Room Temperature Ionic Liquid (RTIL) electrolytes promises to improve the energy density of Electrochemical Capacitors (ECs) by allowing for operation at higher voltages. RTIL electrolytes 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)), 1-ethyl-3-methylimidazolium dicyanamide (EMImN(CN)(2)), 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DMPImTFSI), and 1-butyl-3-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMPyFAP) were studied. Tetraethylammonium tetrafluoroborate 1 molar solution in anhydrous propylene carbonate (Et(4)NBF(4)-PC 1M) was studied for comparison purposes. Carbon was produced from phenolic resin activated in CO(2). The porosity of the carbon samples were characterised by N(2) adsorption-desorption at 77 K and the relevant electrochemical behaviour was characterised by galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic voltammetry. The highest operating voltage of 3.5 V was obtained for BMPyFAP, whilst the best capacitive performance was obtained for EMImBF(4). The maximum energy density increased to 70 Wh kg(-1) (carbon) for RTIL EMImBF(4) from 35 Wh kg(-1)(carbon) for the organic electrolyte Et(4)NBF(4)-PC 1M. It was found that the performance of the RTIL electrolytes could be related to the IL viscosity and ion size whilst the electrolyte equivalent series resistances produced a linear relationship with viscosity. It was found that the capacitance performance of the RTIL electrolytes followed the order EMImBF(4) > DMPImTFSI > BMPyFAP > EMImN(CN)(2). The electrolyte and equivalent series resistance were in the order EMImN(CN)(2) < EMImBF(4) < DMPImTFSI < BMPyFAP.