Aphytis lepidosaphes (Hymenoptera: Aphelinidae) as an Effective Parasitoid for Controlling the Lepidosaphes tapleyi (Williams)

Pak J Biol Sci. 2021 Jan;24(12):1246-1255. doi: 10.3923/pjbs.2021.1246.1255.

Abstract

<b>Background and Objective:</b> The guava long scale insect <i>Lepidosaphes tapleyi</i> (Williams) (Hemiptera: Diaspididae) is considered one of the main destructive pests of guava around the world. Biological control represents a sustainable alternative for saving control of <i>L. tapleyi</i>. The main objective of the present work was to study the seasonal activity and evaluate the impacts of climatic factors on populations of the parasitoid, <i>Aphytis</i> <i>lepidosaphes</i>, during two successive years (2017/2018 and 2018/2019) in Esna district, Luxor Governorate, Egypt. <b>Materials and Methods:</b> Estimation of the relationship between the population density of <i>L. tapleyi</i> and <i>A. lepidosaphes</i> activity, by using different models of correlation and regression analyses. The estimate of the effects of climatic factors (daily mean max. temp., min. temp., mean of % relative humidity and mean of dew point) on seasonal activity of the parasitoid, <i>A. lepidosaphes</i>, during two successive years (2017/2018 and 2018/2019). <b>Results:</b> The results showed that the relationship between the population density of <i>L. tapleyi</i> and <i>A. lepidosaphes </i>activity was positive during both years. Furthermore, simple regression analysis indicated that the abundance of <i>A. lepidosaphes </i>was more highly correlated with the <i>L. tapleyi</i> population density in each whole year during the two successive years. The percentages of explained variance EV (%) indicated that all tested variables, i.e. daily mean maximum temperature, minimum temperature, relative humidity and dew point were responsible for 76.26 and 65.40% of the changes in parasitoid, respectively. Furthermore, the dew point was the most effective variable for the change in the parasitoid populations by 33.61 and 18.62%. <b>Conclusion:</b> The results showed that <i>A. lepidosaphes </i>had three peaks of seasonal abundance over the entire year. As well, the activity of <i>A. lepidosaphes</i> was more highly correlated with the <i>L. tapleyi </i>population size over the two successive years.

Keywords: Aphytis lepidosaphes; Lepidosaphes tapleyi; environmental conditions; parasitoid; seasonal activity.

MeSH terms

  • Animals
  • Biological Control Agents / analysis
  • Biological Control Agents / standards
  • Communicable Disease Control / methods
  • Communicable Disease Control / standards*
  • Egypt
  • Hymenoptera / metabolism*
  • Hymenoptera / microbiology
  • Psidium / drug effects*
  • Psidium / parasitology

Substances

  • Biological Control Agents