Evaluation of Haloferax mediterranei Strain R4 Capabilities for Cadmium Removal from Brines

Mar Drugs. 2023 Jan 21;21(2):72. doi: 10.3390/md21020072.

Abstract

Haloferax mediterranei has revealed a high bioremediation potential for several inorganic anions (e.g., nitrates and nitrites) and metals from hypersaline waters and brines. However, it is unclear, to date, whether this microorganism allows Cd (II) bioremediation. Consequently, the main objective of this work was to assess the Cd (II) bioremediation potential of Hfx. mediterranei R4. To this end, Hfx. mediterranei cell growth rate and metal bioaccumulation were investigated using different culture media (complex, CM, and defined medium, DM) containing Cd (II) up to 1 mM. In addition, the elemental profile of the biomass (i.e., Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Sr and Zn) has also been monitored to gain insight into the metabolic processes that may be taking place at the intracellular level for Cd (II) removal. Because of the formation of CdS precipitate, CM is not a suitable culture media for evaluating Cd bioremediation since metal concentration could not be appropriately controlled. When operating in DM, it was observed that the cell doubling time increases three times in the presence of Cd (II). Hfx. mediterranei can bioaccumulate Cd, showing the highest significant accumulation at concentrations of 0.4 mM (108 ± 12 mg Cd/g dry tissue). Finally, the presence of Cd (II) affects the content of K, Mg, Mn and Zn in the biomass, by increasing K levels up to 27 ± 18% and Mn up to 310 ± 140% and reducing Mg levels up to 55 ± 36% and Zn up to 30 ± 4%. These results suggest that different mechanisms are involved in Cd (II) tolerance by Hfx. mediterranei, resulting in increasing the cell concentration of stress-tolerant elements in the biomass (K and Mn), while lowering the concentration of elements which Cd (II) competes with (Mg and Zn), and that all affects the physiological response of the organism by decreasing its growth rate.

Keywords: bioremediation; brine; cadmium; haloarchaea; metals.

MeSH terms

  • Cadmium* / metabolism
  • Culture Media / metabolism
  • Haloferax mediterranei* / metabolism
  • Metals / metabolism
  • Nitrites / metabolism

Substances

  • Cadmium
  • Metals
  • Nitrites
  • brine
  • Culture Media