Effects of seed layers on structural, morphological, and optical properties of ZnO nanorods

J Nanosci Nanotechnol. 2011 Jan;11(1):511-7. doi: 10.1166/jnn.2011.3260.

Abstract

We studied the effects of seed layers on the structural and optical properties of ZnO nanorods. ZnO and Ag-doped ZnO (ZnO:Ag) seed layers were deposited on glass substrates by magnetron co-sputtering. ZnO nanorods were grown on these seed layers by the chemical bath deposition in an aqueous solution of Zn(NO3)2 and hexamethyltetramine. SEM micrographs clearly reveal that ZnO nanorods were successfully grown on both kinds of seed layers. The XRD patterns indicate that crystallization of ZnO nanorods is along the c-axis. Meanwhile, the packing density and the vertical alignment of the ZnO nanorods on the ZnO seed layer are better than those of the ZnO nanorods on ZnO:Ag. The enhanced growth of nanorods is thought to be due to the fact that the ZnO layer exhibits a higher crystalline quality than the ZnO:Ag layer. According to the low-temperature photoluminescence spectra, the ZnO nanorods on the ZnO seed layer show a narrow strong ultraviolet emission band centered at 369 nm, while those on ZnO:Ag exhibit multiple bands. These results are thought to be related with the crystallinity of ZnO nanorods, the morphologies of ZnO nanorods, and the reflectivities of seed layers. More detailed studies for clarification of the seed layer effect on the growth of ZnO nanorods are desirable.

Publication types

  • Research Support, Non-U.S. Gov't