Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers

Sensors (Basel). 2015 Jun 11;15(6):13763-77. doi: 10.3390/s150613763.

Abstract

This study proposes a new water body classification method using top-of-atmosphere (TOA) reflectance and water indices (WIs) of the Landsat 8 Operational Land Imager (OLI) sensor and its corresponding random forest classifiers. In this study, multispectral images from the OLI sensor are represented as TOA reflectance and WI values because a classification result using two measures is better than raw spectral images. Two types of boosted random forest (BRF) classifiers are learned using TOA reflectance and WI values, respectively, instead of the heuristic threshold or unsupervised methods. The final probability is summed linearly using the probabilities of two different BRFs to classify image pixels to water class. This study first demonstrates that the Landsat 8 OLI sensor has higher classification rate because it provides improved signal-to-ratio radiometric by using 12-bit quantization of the data instead of 8-bit as available from other sensors. In addition, we prove that the performance of the proposed combination of two BRF classifiers shows robust water body classification results, regardless of topology, river properties, and background environment.

Keywords: Landsat 8; OLI sensor; boosted random forest; water body classification.