Flow Characteristics and Switching Mechanism of Bistable Slit Flow Actuated by Temperature

Entropy (Basel). 2023 Apr 13;25(4):650. doi: 10.3390/e25040650.

Abstract

The bistable flow is attractive as it can be analogous to a switch to realize flow control. Based on the previous studies on actuation technique, the present study first proposed temperature-driven switching of bistable slit flow. A two-dimensional numerical simulation was conducted to investigate the flow deflection characteristics and switching mechanism. It was concluded that the temperature gradient not only biases the slit flow but also locks it to the high-temperature side. The flow deflection angle became larger with the increase in temperature gradient. Being driven by the temperature, the flow can be switched from one side to the other. Furthermore, the fluid viscosity, which varies with temperature, determines the degree of flow deflection and the entire switching time. This research can enrich the active regulation of flow and has significant potential applications in thermal sensors, thermal detectors, microelectromechanical systems, biomedicine, and other equivalent fields.

Keywords: bistable slit flow; flow regulation; numerical simulation; switching; temperature-driven.