Protective Effects of Bacteriophages against Aeromonas hydrophila Species Causing Motile Aeromonas Septicemia (MAS) in Striped Catfish

Antibiotics (Basel). 2018 Feb 25;7(1):16. doi: 10.3390/antibiotics7010016.

Abstract

To determine the effectivity of bacteriophages in controlling the mass mortality of striped catfish (Pangasianodonhypophthalmus) due to infections caused by Aeromonas spp. in Vietnamese fish farms, bacteriophages against pathogenic Aeromonashydrophila were isolated. A.hydrophila-phage 2 and A.hydrophila-phage 5 were successfully isolated from water samples from the Saigon River of Ho Chi Minh City, Vietnam. These phages, belonging to the Myoviridae family, were found to have broad activity spectra, even against the tested multiple-antibiotic-resistant Aeromonas isolates. The latent periods and burst size of phage 2 were 10 min and 213 PFU per infected host cell, respectively. The bacteriophages proved to be effective in inhibiting the growth of the Aeromonas spp. under laboratory conditions. Phage treatments applied to the pathogenic strains during infestation of catfish resulted in a significant improvement in the survival rates of the tested fishes, with up to 100% survival with MOI 100, compared to 18.3% survival observed in control experiments. These findings illustrate the potential for using phages as an effective bio-treatment method to control Motile Aeromonas Septicemia (MAS) in fish farms. This study provides further evidence towards the use of bacteriophages to effectively control disease in aquaculture operations.

Keywords: Aeromonas hydrophila; MAS; Motile Aeromonas Septicemia; bacteriophage; biological control; multiple-antibiotic-resistance; striped catfish (Pangasianodon hypophthalmus).