Agricultural drought assessment in dry zones of Tolima, Colombia, using an approach based on water balance and vegetation water stress

Sci Total Environ. 2024 Apr 15:921:171144. doi: 10.1016/j.scitotenv.2024.171144. Epub 2024 Feb 22.

Abstract

Soil water balance is an essential element to consider for the management of droughts and agricultural land use. It is important to evaluate the water consumption of a crop in each of its phenological phases and the status of water reserves during critical hydrologic periods. This study developed an agricultural drought index (Standardized Soil Moisture Deficit Index - SMODI) conceptualized with a water balance model considering the vegetation stress caused by soil moisture deficit. This contribution was based on meteorological information, soil moisture from satellite images, hydrophysical properties of the soil and crop evapotranspiration. Information from 61 weather stations located in the dry zone of Tolima was used for estimating the water balance. SMODI was compared with the most common drought indexes: Standardized Precipitation - Evapotranspiration Index (SPEI), the Palmer Self-Calibrated Drought Index (scPDSI), and other eleven macroclimatic indexes. Pearson's correlation coefficients (r), Tukey's test, and analysis of variance were applied to analyze the degree of association between SMODI and the contrasting indexes on a quarterly basis. SMODI considers factors influencing soil moisture distribution and retention and the water stress thresholds that plants have evolved to withstand during drought periods. Consequently, this integrated approach enhances the assessment of agricultural drought by relying on pertinent physical processes. SMODI identified extremely dry, severe, moderate and normal drought 5 %, 3 %, 20 % and 72 % respectively conditions in areas characterized by Entisols, Inceptisols, and Andisols, where rice and fruit crops and pasturelands are cultivated. The SMODI has a good correlation with macroclimatic indexes (0.70 < r < 0.74).

Keywords: Agricultural drought; Drought index; Evapotranspiration; Remote sensing; Soil moisture.

MeSH terms

  • Agriculture
  • Colombia
  • Dehydration*
  • Droughts*
  • Humans
  • Soil

Substances

  • Soil