Synthesis of a New Co Metal-Organic Framework Assembled from 5,10,15,20-Tetrakis((pyridin-4-yl) phenyl)porphyrin "Co-MTPhPyP" and Its Application to the Removal of Heavy Metal Ions

Molecules. 2023 Feb 15;28(4):1816. doi: 10.3390/molecules28041816.

Abstract

The synthesis of a Co metal-organic framework assembled from 5,10,15,20-tetrakis((pyridin-4-yl)phenyl)porphyrin; TPhPyP) "Co-MTPhPyP" is reported. The TPhPyP ligand was synthesized via aldehyde condensation in 28% yield and characterized by 1H nuclear magnetic resonance (1H NMR), Fourier-transform infrared (FTIR), high-resolution mass spectrometry (HRMS), and UV-visible spectroscopy (UV-vis). Co-MTPhPyP was prepared by the solvothermal method from TPhPyP and CoCl2·H2O in 55% yield and characterized by X-ray powder diffraction (XRD), FTIR, thermogravimetric analysis (TGA), field-emission scanning electron microscopy with energy-dispersive X-ray (FESEM-EDS), X-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS), showing a particle size distribution of 418 ± 58 nm. The sorption properties of the Co-MTPhPyP for the effective removal of Pb(II) and Cu(II) were evaluated in an aqueous medium and Cthe results showed uptake capacities of 383.4 and 168 mg of the metal g-1 after 2 h, respectively. Kinetic studies of Pb(II) adsorption by Co-MTPhPyP were adjusted to the pseudo-second-order model with a maximum adsorption capacity of 458.8 mg g-1 at 30 min of exposition.

Keywords: adsorption; cobalt; kinetic study; lead; metal–organic framework; porphyrin.

MeSH terms

  • Adsorption
  • Ions
  • Kinetics
  • Lead
  • Metal-Organic Frameworks* / chemistry
  • Metals, Heavy* / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Water Pollutants, Chemical* / chemistry

Substances

  • Metal-Organic Frameworks
  • Lead
  • Metals, Heavy
  • Ions
  • Water Pollutants, Chemical