Effects of Diesel Exhaust Particles on Mouse Gastric Stem Cells

Life (Basel). 2020 Aug 12;10(8):149. doi: 10.3390/life10080149.

Abstract

Stem cells have attracted many scientists because of their unique properties and therapeutic applications. However, very little is known on the environmental toxins that could affect their biological features. This study focuses on the consequences of the exposure of a cell line representative of the mouse gastric stem/progenitor (mGS) cells to diesel exhaust particles (DEPs). These immortal cells were cultured using routine protocols. The DEPs were added to the culture media at 1, 10, and 100 µg/mL for 1 to 72 h. The cells were assayed for their viability, migration, oxidative stress, and the expression of genes specific for cell proliferation, pluripotency, and death. DEPs induced a reduction in the metabolic activity of mGS cells, only at a high concentration of 100 µg/mL. However, no significant effects were detected on cell migration, oxidative stress markers (glutathione and thiobarbituric acid reactive substances), and cell death related proteins/genes. Interestingly, these findings were associated with down-regulation of Notch 2 and 3 and Bmi-1 proteins and activation of STAT3 involved in the regulation of the fate of stem cells. In conclusion, this study demonstrates that mGS cells have some resistance to oxidative stress and apoptosis when exposed to DEPs at the expense of their stemness.

Keywords: cell migration; cell viability; diesel exhaust particles; oxidative stress; stem cells.