Time-correlated single photon Raman spectroscopy at megahertz repetition rates

Opt Lett. 2021 Sep 1;46(17):4104-4107. doi: 10.1364/OL.434418.

Abstract

Significant improvements in time-correlated single photon counting (TCSPC) Raman spectroscopy acquisition times can be achieved through exploitation of megahertz (MHz) laser repetition rates. We have developed a TCSPC Raman spectroscopy system based on a high peak power (>40W) pulsed laser, a high pulse repetition rate (40 MHz), a custom f/1.5 spectrometer, and a 512 spectral channel × 16 time bin single photon avalanche diode line sensor. We report millisecond Raman spectrum acquisition times, a peak Raman count rate of 104 kcps, and a linewidth aggregated count rate of 440 kcps with a diamond sample. This represents a three-order-of-magnitude increase in measured Raman count rate in comparison with a 104 kHz pulsed laser operating at 300 W and a four-order-of-magnitude increase over a 0.1 W pulsed laser operating at 40 MHz. A Raman-to-fluorescence ratio of 4.76 is achieved with a sesame oil sample at a 20 MHz repetition rate. Achieving high count rates and Raman-to-fluorescence ratios unlocks the potential of combined Raman/fluorescence lifetime spectroscopy for imaging and other short acquisition time applications.