Deep Learning-Based Prediction of Alzheimer's Disease Using Microarray Gene Expression Data

Biomedicines. 2023 Dec 13;11(12):3304. doi: 10.3390/biomedicines11123304.

Abstract

Alzheimer's disease is a genetically complex disorder, and microarray technology provides valuable insights into it. However, the high dimensionality of microarray datasets and small sample sizes pose challenges. Gene selection techniques have emerged as a promising solution to this challenge, potentially revolutionizing AD diagnosis. The study aims to investigate deep learning techniques, specifically neural networks, in predicting Alzheimer's disease using microarray gene expression data. The goal is to develop a reliable predictive model for early detection and diagnosis, potentially improving patient care and intervention strategies. This study employed gene selection techniques, including Singular Value Decomposition (SVD) and Principal Component Analysis (PCA), to pinpoint pertinent genes within microarray datasets. Leveraging deep learning principles, we harnessed a Convolutional Neural Network (CNN) as our classifier for Alzheimer's disease (AD) prediction. Our approach involved the utilization of a seven-layer CNN with diverse configurations to process the dataset. Empirical outcomes on the AD dataset underscored the effectiveness of the PCA-CNN model, yielding an accuracy of 96.60% and a loss of 0.3503. Likewise, the SVD-CNN model showcased remarkable accuracy, attaining 97.08% and a loss of 0.2466. These results accentuate the potential of our method for gene dimension reduction and classification accuracy enhancement by selecting a subset of pertinent genes. Integrating gene selection methodologies with deep learning architectures presents a promising framework for elevating AD prediction and promoting precision medicine in neurodegenerative disorders. Ongoing research endeavors aim to generalize this approach for diverse applications, explore alternative gene selection techniques, and investigate a variety of deep learning architectures.

Keywords: Alzheimer’s; convolutional neural networks (CNNs); deep learning; gene expression; microarray technique.

Grants and funding

This research received no external funding.